DYNAMIC 77 Se NMR OF PHENYLSELENYL CYCLOHEXANE DERIVATIVES Helmut Duddeck*, Petra Wagner and Sabine Gegner Ruhr-Universität Bochum, Abteilung für Chemie, Postfach 102148, D-4630 Bochum 1, FRG Abstract: For phenylselenyl cyclohexane (1) ring inversion barriers ($\Delta G_{278}^{\frac{1}{2}}$) of 11.7 ± 0.2 (eq-1 \rightarrow ax-1) and 10.5 ± 0.2 kcal/mol (ax-1 \rightarrow eq-1) and an A-value of 1.1 were determined. Extraordinarily large diamagnetic γ effects of ca 30-40 ppm per CH₂ group were found. Although 77 Se has rather favourable NMR properties (I=1/2, 7.6% natural abundance and a receptivity of 2.98 relative to 13 C) little is known about the structure dependence of 77 Se chemical shifts [δ (77 Se)] in aliphatic compounds¹. In this communication we want to report on temperature-dependent 77 Se NMR spectra of some phenylselenyl cyclohexane derivatives which were prepared by the treatment of diphenyldiselenide with sodium borohydride and subsequent addition of the corresponding bromides or methanesulphonates 2,3 : The 77 Se NMR spectra shown in Fig.1 indicate conformational interconversions of 1 and 3. At low temperatures (223 K) the equatorially and axially substituted isomers of 1 (Fig.1a) give separate signals with an intensity ratio of 9.2 : 1. The energy barriers for the ring inversion can be determined using approximation equations for the evaluation of dynamic NMR spectra 4 . The rate constants were estimated for the temperature of maximum line broadening of the main signal (278 \pm 5 K) with the equations $k_{\rm eq} \rightarrow ax^{=2\pi} p_{\rm ax} \Delta v$ and $k_{\rm ax} \rightarrow eq^{=2\pi} p_{\rm eq} \Delta v$; $p_{\rm ax}$ and $p_{\rm eq}$ are the popuration of the popuration of the popuration of the popuration of the equations $k_{\rm eq} \rightarrow ax^{=2\pi} p_{\rm ax} \Delta v$ and $k_{\rm ax} \rightarrow eq^{=2\pi} p_{\rm eq} \Delta v$; $p_{\rm ax}$ and $p_{\rm eq}$ are the popuration of the popuration of the equations $k_{\rm eq} \rightarrow ax^{=2\pi} p_{\rm ax} \Delta v$ and $k_{\rm ax} \rightarrow eq^{=2\pi} p_{\rm eq} \Delta v$; $p_{\rm ax} \rightarrow eq^{=2\pi} p_{\rm eq} \Delta v$ and $p_{\rm eq} \rightarrow eq^{=2\pi} p_{\rm eq} \Delta v$ and $p_{\rm eq} \rightarrow eq^{=2\pi} p_{\rm eq} \Delta v$. Fig. 1: Temperature-dependent 77 Se NMR spectra of 1 (a) and a 1 : 1 - mixture of 2 and 3 (b), in $({\rm CD_3})_2{\rm CO}$ lations of ax-1 and eq-1, repectively, and $\Delta \nu$ is the chemical shift difference at low temperature $(6086~{\rm Hz} \cong 79.8~{\rm ppm})^5$. Thus, values of $\Delta G_{\rm ea}^{\neq} = 11.7 \pm 0.2$ and $\Delta G_{\rm ae}^{\neq} = 10.5 \pm 0.2$ kcal/mol were obtained which are a little higher than other ring inversion barriers in monosubstituted cyclohexanes⁶. The difference of 1.2 kcal/mol is the ground state free energy difference $(-\Delta G^{\circ} \equiv A)$. The A-value can also be obtained directly from the peak area ratio at 223 K ($\Delta G^{\circ} = -{\rm RT~In~K}$) giving 1.0. Since due to the extreme line broadening our calculations are based only on approximations we refrain from a discussion of this divergence in terms of temperature dependence and propose a "best" A-value of 1.1. It is somewhat larger than that of PhS $(0.8)^7$ and this is in accordance with the observation that in contrast to the halogens van der Waals radii apparently play an important role in the chalcogen group⁷. The populations of the two rotamers of **3** (Fig. 1b) are equal because they are mirror images. In contrast its cis-isomer **2** is conformationally rigid and hence its spectrum does not show any coalescence effect. This is a proof that the line broadening observed for **1** and **3** is indeed due to the ring inversion and not to restricted rotations in C-Se bonds⁸. A further confirmation is the fact that there are no coalescences for **4** and **5** as well at any temperature between 223 and 293K. Table 1: 77 Se chemical shifts of 1 - 5 at 293 and 223 K^a | | 11 | 2 | 3 | 4 | 5 | |-------|---------|-------|---------|-------|-------| | 293 K | 398 ± 1 | 415.7 | 369 ± 1 | 392.3 | 400.8 | | 223 K | 399.9 | 402.9 | 393.3 | 380.8 | 379.0 | | | 320.1 | | 321.8 | | | ^a In (CD₃)₂CO, relative to external neat (CH₃)₂Se (δ = 0) The 77 Se chemical shift differences for PhSe in axial and equatorial positions are remarkably large. Although a detailed interpretation of the structure dependence is mandatory and under investigation is this laboratory, it can already be stated that 77 Se nuclei like many others (e.g. 13 C, 15 N or 17 O) experience diamagnetic $_{\chi}$ effects which, however, are extraordinarily large (here: 35 - 40 ppm per each $_{\chi}$ -gauche CH $_{\chi}$). This is the reason why the line broadening of the 77 Se resonances of 1 and 3 occurs at such unusually high temperatures; their 13 C signals do not show coalescence effects above 223 K. Thus, 77 Se is an excellent candidate for dynamic NMR investigations because chemical shift differences in various conformations may be extremely large. NMR measurements: The 77 Se NMR spectra were recorded at 76.27 MHz (Bruker AM-400) in 0.1 - 1 molar $(CD_3)_2$ CO solutions using ca 30° pulses and a repetition rate of 5 sec since the 77 Se nuclei have rather long relaxation times $(T_1 \approx 10\text{-}15 \text{ sec})^9$. Moreover, NOE effects are insignificant for these compounds 9 so that the 77 Se NMR spectra were obtained without 1 H decoupling. In each instance some PhSeSePh was added as internal standard for line broadening determinations. As can be seen in Fig.1 77 Se chemical shifts are very sensitive to temperature changes 10 . All chemical shift values are referenced to the signal position of PhSeSePh in CDCl $_3$ solution (δ = 462.6) at 294 K corresponding to δ = 0 of neat (CH $_3$) $_2$ Se; positive values indicating higher frequencies. ## References and Notes - 1 H.C.E. McFarlane and W. McFarlane, in <u>NMR of Newly Accessible Nuclei</u> (P.Laszlo, Ed.), Vol. 2, 275, Academic Press, New York (1983). - 2 D.L.J. Clive, Tetrahedron 34, 1049 (1978); D. Liotta, Acc. Chem. Res. 17, 28 (1984). - 3 Details on the synthesis and the characterisation of 1 5 will be published in a forthcoming paper. - 4 J. Sandström, Dynamic NMR Spectroscopy, Academic Press, London (1982). - 5 F.A.L. Anet and V.J. Basus, J. Magn. Reson. 32, 339 (1978). - 6 J.E. Anderson, <u>Top. Curr. Chem.</u> 45, 139 (1974); D. Höfner, S.A. Lesko and G. Binsch, <u>Org.</u> Magn. Reson. 11, 179 (1978). - 7 J.A. Hisch, <u>Top. Stereochem.</u> 1, 199 (1967); F.R. Jensen and C.H. Bushweller, <u>Adv. Alicycl.</u> Chem. 3, 139 (1971). - 8 A coalescence of this type has been reported for the sterically highly hindered bis-(2,4,6-tri-t-butylphenyl)diselenide: H. Kessler and W. Rundel, <u>Chem. Ber.</u> 101, 3350 (1968). - 9 O.A. Gansow, W.D. Vernon and J.J. Dechter, <u>J. Magn. Reson.</u> 32, 19 (1978); T.C. Wong, T.T. Ang, F.S. Guziec, Jr. and C.A. Moustakis, <u>J. Magn. Reson.</u> 57, 463 (1984) and own measurements. - 10 M. Lardon, J. Am. Soc. Chem. 92, 1063 (1970); in the experiment described here the temperature dependence of the PhSeSePh signal is about 23 Hz/K. ## Acknowledgements Financial support from the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is gratefully acknowledged. (Received in Germany 10 December 1984)